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SUMMARY

A multigrid preconditioned conjugate gradient method (MGCG method), which uses the

multigrid method as a preconditioner of the PCG method, is proposed. The multigrid method has

inherent high parallelism and improves convergence of long wavelength components, which is

important in iterative methods. By using this method as a preconditioner of the PCG method, an

efficient method with high parallelism and fast convergence is obtained. First, it is considered a

necessary condition of the multigrid preconditioner in order to satisfy requirements of a

preconditioner of the PCG method. Next numerical experiments show a behavior of the MGCG

method and that the MGCG method is superior to both the ICCG method and the multigrid

method in point of fast convergence and high parallelism. This fast convergence is understood in

terms of the eigenvalue analysis of the preconditioned matrix. From this observation of the

multigrid preconditioner, it is realized that the MG_CG method converges in =very =few iterations and

the multigrid preconditioner is a desirable preconditioner of the conjugate gradient method.

1 INTRODUCTION

The typical numerical methods of a king-size system of linear equations, after discretization of

the partial differential equations, are the preconditioned conjugate gradient method (PCG method)

and the multigrid method [12]. The conjugate gradient method is valued in that it suits to parallel

computing and even ill-conditioned problems can be easily solved with the help of a good

preconditioning.

This paper considers an efficient preconditioner and proposes a multigrid preconditioned

conjugate gradient method (MGCG method) which is the conjugate gradient method with the

multigrid method as a preconditioner. The combination of the multigrid method and the conjugate

gradient method was already considered. Kettler and Meijerink [7] and Kettler [8] treated the

multigrid method as a preconditioner of the conjugate gradient method. However this paper

formulates the MGCG method more generally than these and requirements of the multigrid

preconditioner are studied. On the other hand, Bank and Douglas [2] treated the conjugate gradient

method as a relaxation method of the multigrid method. Braess [3] considered these two

combinations and reported that the conjugate gradient method with a multigrid preconditioning is

effective for elasticity problems.
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We study requirementsof the valid multigrid preconditionerand evaluatethis preconditioner by
somenumerical experimentsand eigenvaiueanalysis.Especially,eigenvalueanalysisis a moredirect
and more reasonablecriterion than convergencerate, sincethe numberof iterations of the conjugate
gradient method until convergencedependson the eigenvalues'distribution of the preconditioned
matrix. In Sections2 and 3, the preconditionedconjugategradient method and the multigrid
method which axethe basisof this paper arebriefly explained. Section4 discussesthe requirements
of the valid two-grid preconditionerfor the conjugategradient method; then in Section5, it is
extendedto the requirementsof the multigrid preconditioner. In Section7, numerical experiments
showthat the MGCG method convergeswith very few iterations evenfor ill-conditioned problems.
In Section [8],eigenvalueanalysisis performed,and it is realizedwhy the MGCG method caneasily
solvethe problem that the ordinary multigrid method itself doesnot convergerapidly. When the
multigrid method is usedasa preconditionerof the conjugategradient method, it becomesquite an
effectiveand desirablepreconditionerof the conjugategradient method.

2 THE PRECONDITIONED CONJUGATE GRADIENT METHOD

If a real n x n matrix A is symmetric and positive definite, the solution of a linear system

Ax = f is equivalent to minimization of the quadratic function

Q(x) = lxTAx - fTz. (i)

The conjugate gradient method is one of the minimization methods and uses A-conjugate vectors as

direction vectors which are generated sequentially. Theoretically this method has the striking

property that the number of steps until convergence is at most n steps. This method can be

adapted successfully to the parallel and vector computation, since one CG iteration requires only

one product of the matrix and the vector, two inner products, tree linked triads, two scalar divides

and one scalar compare operation.

Next the preconditioned conjugate gradient method is explained. Let U be a nonsingulax matrix
and define .4 = UAUT; then solve A_ = f using plain conjugate gradient method. Let _:0 be an

initial approximate vector; then an initial residual r ° is r ° = f - Ax °. Let M = uTu, _,o = MrO

and an initial direction vector p0 = _0. The PCG algorithm is described by Program 1.

The matrix M is a precondition matrix and this paper focuses on this computation. A new

proposal is the PCG method exploiting the multigrid method as a preconditioner.

On the other hand, the matrix M should satisfy some conditions: symmetric and positive

definite. Therefore if the matrix of the multigrid method is symmetric and positive definite, it is

reasonable to use the multigrid method as a preconditioner of the CG method. In Sections 4 and 5,

the conditions of the multigrid preconditioner in order to satisfy the requirements of a

preconditioner of the conjugate gradient method are investigated.
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i=0;

while (! convergence ) {

a, =
• /+i= _/+ a/p/;

ri+l = ri- a/Ap/;
convergence test;

r/+l = Mr/+x; //preconditioning

8/= r,);
Pi+1 = _i+i "_-B/Pi;

i++;

Program 1. The PCG iteration

3 THE MULTIGRID METHOD

In the iterative methods, the frequency components of the residual are reduced most rapidly on

the grid corresponding to them. The multigrid method makes good use of this characteristic and

exploits a lot of grids to converge as rapid as possible.

These grids are leveled and numbered from the coarsest grid. This number is called the level

number. If the multigrid method is applied to the solver of linear equations, the residual is reduced

moving it from grid to grid. The basic element of the muitigrid method is the defect correction

principle. The defect correction scheme consists of three processes: pre-smoothing process, coarse

grid correction and post-smoothing process. In the smoothing process, various methods, such as

ILU, ADI and zebra relaxation, are proposed. One purpose of this research is, however, formation of

an efficient method with high parallelism. Thus an iterative method with high parallelism, such as

the damped Jacob/method or a multi-color symmetric SOR method (SSOR method), is used as the

smoothing method.

An operation of transferring a vector on a finer grid to a vector on a coarser grid is called

restriction, and an opposite operator is called prolongation. A matrix presenting the operation of

restriction is written r in this paper, and prolongation is p.

In the following section, the equation of grid level i is described as

Li_i = f i

and restriction is defined by adjoint of prolongation. That is,

bp Tr--

where b, a scalar constant, is satisfied.
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4 THE TWO-GRID PRECONDITIONER

This section and the next section examine whether the multigrid method suits a preconditioner

of the PCG method. First it is shown that two kinds of two-grid methods, one with pre-smoothing

and no post-smoothing and the other with both pre-smoothing and post-smoothing, satisfy the

conditions of a preconditioner: the matrix of the two-grid method is symmetric and positive

definite. Next it is shown that V-cycle and W-cycle multigrid methods also hold.

A linear equation, L_t = ft, is concerned. If R is a matrix of a relaxant calculation and u is an

approximate vector, one two-grid iteration can be shown by matrix form in Table 1.

u = H'_u + R $

d = r (L,u - f)
v = L'[_ld

U--u--pv

u = H'_u + R f

//pre-smoothing

//coarse grid correction

//post-smoothing

Table 1. The two-grid iteration

In this paper the relaxant calculation is an iterative method with high parallelism, and the

matrix R is defined as follows. Let Lj be an n × n nonsingular, symmetric matrix and be split as

L,=P-Q, (2)

where P is a nonsingular matrix and the symmetric part of P T Q is positive definite. For example,

in the case of the point Jacobi method, P IS a diagonal matrix containing diagonal elements of Lt. :

Then the i'th approximate vector u i is updated such as

ui+l = p-1Qui + p-if. (3)

If an initial approximate vector u ° is zero vector and rn iterations are done, R is equal to

ra--I

R= _H iP-l, with H=P-1Q.
_--0

H is called an iterative matrix.

(4)

4.1 The two-grid preconditioner with pre-smoothing only

First consider a no post-smoothing case. The matrix of one iteration of Table 1 equals

M = (I - PL21rL,) R + pL2,r

= R + pL72,r(I- L,R).

Then the following theorem holds.
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Theorem 1 The matrix LT_lx is symmetric and positive definite, and N = I- LIR. If the matrix N

and P are symmetric, the matrix M of Eq. (5) is symmetric in the N-energy inner product. If the

matrix N is symmetric and nonsingular, the matrix P is symmetric and rn is even; then the matrix

M is positive definite in the N-energy inner product, provided that N-energy inner product

(x,y)N=(x, Ny).

Proof. Since N is symmetric, (I- LtR) T = I- LtR. Therefore

I - RTLt = I- LtR.

Since P is symmetric, the matrix R is also symmetric. Then

RLt = LtR. (6)

And

(x, My)N = xTNRy + xTNpL__Ilr (I - LtR) y

= xW(I - L,R)Ry + xT(I - L,R)pLF2lr(I - L,R)y. (7)

Besides

(Mz, y)N = xTMTNy

= xTRNy + xT(I-- LtR)pL_11rNy

= xT(I - L,R)Ry + xT(I- L,R)pL_::(I- L,R)y

= (x, My)N.

(because of Eq. (6))

(8)

Therefore the matrix M is symmetric in the N-energy inner product.

Next, it is shown that the matrix M is the positive definite in the N-energy inner product. It is

equal to (x, MX)N > 0. Then

N = I-L_R

= I-RLt
m-1

= I- __.(p-IQ)ip-l(p_Q)
/=0

= (p-1Q).

Thus

NM = (I- L,R){R + pLT_:(I- L,R)}

= H'_R + H"_pLT_:H "_.

Since P is symmetric and nonsingular and Lt is symmetric and positive definite, then

H = p-1Q = I - P-ILt has real eigenvalues. Hence if m is even, H m is positive definite. If P + Q

is positive definite and m is even, then R is positive definite (see [11]). Therefore HmR is positive
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definite. Since H ra is symmetric and pLiJlr is semi-positive definite, HrnpLTJlrH ra is semi-positive

definite. Thus NM is positive definite. 13

The iterative method which holds the assumption of Theorem 1 is the damped Jacobi method.
From this theorem, the two-grid preconditioner with the damped Jacobi method as a relaxant

Calculation fills the conditions of the preconditioner of the CG method which uses the N-energy

inner product instead of the usual inner product.

4.2 The two-grid preconditioner with both pre-smoothing and post-smoothing

Next consider the two-grid iteration with both pre-smoothing and post-smoothing. Suppose the

pre-smoothing and the post-smoothing are the same method. Then the matrix of one two-grid

iteration in Table 1 equals

M = H'_{(I- pLT.JlrL,)R + pLTJlr} + R

= H"R + R + H_pLTJlr (I - LIR). (9)

However since P and Q are symmetric,

I- LtR-- (Qp-i)ra _- (HT)m.

Therefore the matrix M of Eq. (9) is rewritten as

M = H_R + R+ H'pL_J_r(HT) '_. (10)

Then the following theorem is satisfied.

Theorem 2 The matrix L_J 1 is Symmetric and positive _definite. If the matrix P is symmetric, the

matrix M of Eq. (10) is symmetric and positive definite.

Proof. Since the matrix P is symmetric, the matrix R is also symmetric. Thus

i T = R(HT) '_ + R + HmpLTJlr (HT) m.

Now

H'R

R(H ) "

m-1

= H" _ HiP -1.
i=0

m-1

= _ Hip-I(H:r) m.
i=0

Moreover since P is symmetric and H = p-1Q, then p-IHT = HP -1. Therefore

H_R= R(HT) ''.

E
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After all, the matrix M is symmetric. Next show that the matrix M is positive definite.

M = HmR + R + HmpLT.'_lr (g T) rn

2m-I

= _ Hip -1 + H"pL__lr(HT) m. (11)
i=0

2m-I

Since the first term of right hand expression _ HiP -1 of Eq. (11) is the matrix after 2m times
i=0

iteration, it is positive definite if P + Q is positive definite. Since L7_11 is positive definite,

HmpL_Jlr (HT) ra is semi-positive definite. Therefore M is positive definite. 1-1

The iterative methods which hold the assumption of Theorem 2 are the damped Jacobi method,

Red-Black Symmetric Gauss-Seidel method (RB-SGS method), multi-color SSOR method, ADI

method and so on. From this theorem, the two-grid preconditioner with one of these iterative

methods as a relaxant calculation fulfills the conditions of the preconditioner of the CG method.

5 THE MULTIGRID PRECONDITIONER

In the previous section the possibility of two kinds of two-grid preconditioners is considered. In

the following, only the latter two-grid preconditioner, with both pre-smoothing and post-smoothing,

is discussed. However the same discussion can be applied to the former two-grid preconditioner. In

this section, extension to the multigrid preconditioner is argued. The following theorem holds.

Theorem 3 If assumptions of Theorem 1 and 2 are satisfied, all MG(m,n) methods (rn, n >_ 1)

satisfy conditions of a preconditioner of the CG method, where m is a muItigrid cycle and n is the

number of iterations of the smoothing method.

Proof. The matrix Mr of the V-cycle multigrid method can be defined as

M0 = Lo 1 or R0

Mi = H rnRi+Ri+HmpM,-lr(HT) ,n. (i>_l)

M0 is symmetric and positive definite. If M, is symmetric and positive definite, Mi+l is also

symmetric and positive definite because of Theorem 2. By mathematical induction, every

M, (i > 0) is symmetric and positive definite. Therefore the V-cycle multigrid method can be used

as a preconditioner.

Next the W-cycle multigrid method is considered. If the matrix N_ _) is the multigrid method

with n recursive calls of the multigrid method on level number I-1 as the solution on the coarse

grid, N[ n) is defined as

Lo I or R0
n-1

i H m .Trn N(_)r 1)_Hmg{ Ri+Ri+n p ,-1 (HT)'_}, (i >
/=0
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where H_ng = H 2'_ - H'npN_n_rL,H_._ N_ '*) is symmetric and positive definite. If ",-l_r(")is symmetric

and positive definite, H "_R_ -F R_ q- HmpN[_r (HT) 'n is symmetric and positive definite by

Theorem 2. Thus N[ _) is also symmetric. And because of p(H,_g) < 1 by [?], N[ _} is positive

definite. The W-cycle multigrid method is the case of n = 2. Therefore the W-cycle multigrid

method and all MG(n, m) (m, n > 1) satisfy the conditions of the preconditioner. D

6 THE MGCG METHOD

In the previous section, the multigrid preconditioner which is valid for a preconditioner of the

CG method is considered. When only pre-smoothing is performed, the multigrid preconditioner

with an even number of iterations of the damped Jacobi smoothing Can become a preconditioner of

the conjugate gradient method with the N-energy inner product instead of the usual inner product.

When both pre-smoothing and post-smoothing are performed, the multigrid preconditioner with

RB-SSOR smoothing , ADI method and so on, fulfills the requirements of a preconditioner of the

conjugate gradient method. Thus the multigrid preconditioned conjugate gradient method (MGCG

method) is mathematically valid. There are several variations of this preconditioner. If m is a cycle

of the multigrid method, I is a relaxant method, n is the number of iterations of the relaxant

method and g is the number of grids, the MGCG method is specified as MGCG(/, m, n, g). But g is

an opti0nai parameter and if this parameter is omitted, all available grids are used. For example,

MGCG(RB,1, 2)_s_he MGCG method of the V-cycie multigrid preconditioner with two iterations

of the Red-Black SSOR smoothing.

7 NUMERICAL EXPERIMENTS

7.1 Problems

A two-dimensional Poisson equation with Dirichlet boundary condition:

-v(kvu) = / in f/= [0,1]x [0,1l

with u=g on Of/,

where k is a real function, iS Considered. The equation is defined by a diffusion Constant k, a source

term f and a boundary condition g. Numerical experiments are performed in the following two
conditions.

Problem 1 Diffusion constant is uniform and source term is equal to 0. Boundary condition is

g=0excepty=l andg=3x(1-x) ony=l.

Problem 2 Diffusion constant and source term are depicted by Figs. 1 and 2. Boundary condition

g is always equal to 0.
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Figure 1. Diffusion constant of problem 2

] X

Figure 2. Source term of problem 2

Problem 1 is a simple case, and the multigrid method is expected to converge efficiently. The

multigrid preconditioner is also expected to be efficient. Problem 2 has a non-uniform diffusion

constant and the area with a large diffusion constant looks like a letter 'T'; therefore it has a rich

distribution of eigenvalues of the problem matrix, which is investigated in the next section.

Moreover since a source term is complex, it does not happen that specific iterative methods, such as

ICCG method and MICCG method, accidentally converge very rapidly.

These problems are discretized to three kinds of meshes: 64 × 64, 128 × 128 and 256 × 256, by

the finite element method. These coefficient matrices become symmetric, positive definite and block

tridiagonal.

7.2 Solutions

In numerical experiments, three methods: the MGCG(RB, 1, 2) method, the ICCG(1, 2)

method and the MG(1, 2) method, are compared. The ICCG(1, 2) method is the PCG method

with the incomplete Cholesky decomposition having an additional one line to the original problem

sparse matrix. The MG(1, 2) method is the identical method to the multigrid preconditioner of the

MGCG(RB, 1, 2) method.

Numerical experiments are performed on the HP9000/720 and the program is written by C++

with original vector and matrix classes.
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7.3 Convergence of the MGCG method

size

632

1272

2552

MGCG(RB, 1, 2) MGCG(RB, 1,4). ICCG(1, 2)

of iter. time(sec.) iter. time iter. time
5 0.56 4 0.6i 38 1.19
5 3.16 5 4.58 72 10.88

5 15.8 5 23.7 134 89.5

MG(1, 2)
iter. time

7 0.65

7 4.05

7 20.2

(ttP9000/720; C++)

Table 2. Problem 1

MGCG(RB, 1, 2) MGCG(RB, !, 4)"
size # of iter. time(sec.) iter. time
63 z 9 0.98 8 1.19

1272 9 5.54 8 7.21

2552 9 27.8 8 37.4

ICCG(1,2). MG(1, 2)
iter. time iter. time

53 1.65 150 13.4

103 15.49 135 75.3

200 133.0 122 341.5

(HP9000/720; C++)

Table 3. Problem 2

Tables 2 and 3 are results of these numerical experiments. The number of iterations and the time

of each method until convergence are measured. The numbergf iterations of the MGCG method

and the ICCG method is that of CG iterations and the number of iterations of the multigrid method

is that of V-cycle iterations. From results of the two problems, the following points are notable:

• The MGCG method converges with very few iterations.

• The number of iterations of the MGCG method does not increase when a mesh size is larger.

• Even for complex problems, such as problem 2, the MGCG method converges fast.

The first item is discussed by an eigenvalue analysis in the next section. From the second item, the

MGCG method is advantageous over ihe ICCG method even as large as the mesh size is. It is a

principle of th e multigrid method that the number of iterations does not depend upon the mesh

size. If the problem is simple such as probleml, the multigrld method converges very fast; however,

in complex problems, such as problem 2, it converges very slowly. To avoid this, the mu]tlgri_: :

method should have the stronger relaxation method, but the stronger relaxation method has poor

parallelism. Moreover in problem2, it is Considered that the locking effect [?] has occurred. From

the third item, the MGCG method is also superior to the multigrid method as a result of stably fast

convergence and high parallelism.
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8 EIGENVALUE ANALYSIS

In order to study the efficiency of the multigrid preconditioner, the eigenvalue distribution of a

coefficient matrix after preconditioning is examined. The number of iterations of the conjugate

gradient method until convergence depends upon an initial vector, a distribution of eigenvalues of a

coefficient matrix and a right-hand term, but due to a good initial vector and a simple right-hand

term, the conjugate gradient method happens to converge fast unreasonably, so the eigenvalue

distribution is investigated. The problem is the same problem in Section 7 and the area is

discretized to the mesh of 16 x 16 by the finite element method. The condition number of this

coefficient matrix is 5282.6.

A matrix after the multigrid preconditioning is calculated as follows. The matrix M of Eq. (5)

or (10) is Cholesky decomposed as M = UrU, then eigenvalues of the matrix UL_U r is investigated.

On the other hand the matrix using the ICCG method is calculated as follows. The matrix Lt is

incomplete Cholesky decomposed as Lt = sTs - T, and the general eigenvalue problem

L_ = $SrSz is solved in order to examine eigenvalues after preconditioning.

e-
¢0
_.ar1

1e+06

100000

10000

1000

100

10

Problem 2 *

3

2.5

2

1.5

1

0.5

0
0

MGCG(RB,I,2) •

1CCG(1,2) * /

i i i i

0 50 100 150 .200 250 250

number of eigenvalues

J
3/

z t t !

50 100 150 200
number of eigenvalues

Figure 3. Eigenvalue distribution of a problem Figure 4. Eigenvalue distribution
matrix preconditioning

after

The eigenvalue distribution of the problem matrix is shown in Fig. ??. The horizontal x axis is

the order of the eigenvalues and the vertical y axis values are the eigenvalues. This vertical axis is in

a log scale. The eigenvalue distribution of the matrix after preconditioning is shown in Fig. ??. This

vertical axis is in a linear scale. In order to compare, preconditioning is carried out in both the

multigrid method and the incomplete Cholesky decomposition.

The eigenvalue distribution of the multigrid preconditioner is effective for the conjugate gradient

method as the following points:
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1. Almost all eigenvaluesareclusteredaround 1 and a few eigenvaluesare scatteredbetween1
and O.

2. The smallest eigenvalueis larger than the ICCG method.

3. Condition number is decreased.

The first item is no problemfor the conjugategradientmethod. All of thesecharacteristicsare
desirableto acceleratethe convergenceof the conjugategradient method. In problem 1, there are
no scatteredeigenvalues.Sothe multigrid method convergesefficiently,howeverin problem 2, the
scatteredeigenvaluesprevent the ordinary multigrid method from convergingrapidly. Therefore
Using the multigrid method as a preconditioner of the conjugate gradient method is quite important.

9 CONCLUSION

This paper investigates the conjugate gradient method with a multigrid preconditioner (MGCG

method). Necessary conditions of a preconditioning matrix of the conjugate gradient method are

symmetric and positive definite. First two kinds of two-grid preconditioners are considered and

conditions of both preconditioners are given in order to satisfy necessary conditions of a

preconditioner. Secondly extension to the multigrid preconditioner is carried out and conditions for

a valid multigrid preconditioner are also given. Thirdly numerical experiments are performed and

the MGCG method has faster convergence and a more effective method than both the ICCG

method and the mnltigrid method. Finally eigenvaJue analysis is performed in order to verify the

effect of the multigrid preconditioner. It concludes that the multigrid preconditioner is an excellent

preconditioner and it improves the number of the CG iterations remarkably. Consequently the

MGCG method has the following properties:

• The number of iterations does not increase even when a mesh is finer.

• Even in the case that the problem is ill-conditioned, the MGCG method is effective.

• The distribution of the eigenvalues of the matrix after preconditioning is suited to the

conjugate gradient method.

• The MGCG method has high parallelism.

The multigrid method roughly solves any problems, since almost all eigenvalues of Section ?? are

clustered around the unity, but a few scattered eigenvalues prevent fast convergence. The conjugate

gradient method hides the defect of the multigrid method. Therefore the MGCG method becomes
an efficient method. Parallelization of the MGCG method and implementation on the

multicomputers are beyond the scope of this paper, so this facility is no more mentioned. However

since the MGCG method has high parallelism and fast convergence, this method is a very promising

method as the solution of a large-scaled sparse, symmetric and positive definite matrix.
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